然归国,《致中国全体留美学生的公开信》便是出自他手。
诚然。
由于种种原因,华罗庚在数学方向上的成就可能算不了当世顶尖。
比如说他在多复变函数方面建树颇深,但距离菲尔兹奖还是有一定距离的。
不过对于华夏人来说。
华罗庚先生的贡献当之无愧可位列数学史前茅!
因为他是华夏多个数学领域的奠基人,属于标准的开路者,这不是数学某项成就或者定理能比拟的。
华罗庚先生先期做基础数学(纯数学),后来又和钱五师类似,出于国家需要转行做应用数学。
接着进入计算数学领域,最后还开拓了华夏管理科学基础和经济理论的大路。
某种意上来说。
只要你经历过九年制义务教育,那么你都算是华罗庚先生的徒子徒孙。
因此就和陆光达一样。
可能千百年后,世界上其他国家已经没多少人知道陆光达和华罗庚的大名了。
但对于任何一名华夏人而言。
他们都是要被刻在血脉里铭记与敬仰的先辈。
而除了华罗庚之外。
剩下的陈景润和冯康同样也是国内顶尖的数学大佬。
当然了。
提到陈景润,就不得不首先提到另一个概念:
《哥德巴赫猜想》。
后世随着徐迟的报告文学《哥德巴赫猜想》的问世,哥德巴赫猜想在国内早已家喻户晓。
但实际上。
哥德巴赫猜想包括两个部分:
1.每一个大于7的奇数都可以写成三个素数之和;
2.每一个大于6的偶数都可以写成两个素数之和。
同时从整个猜想的陈述来看。
如果第2部分是正确的。
那么可以根据公式n=(n?3)+3,直接得到第1部分也是正确的。
因此第2部分被称为强哥德巴赫猜想,第1部分被称为弱哥德巴赫猜想。
其中哥德巴赫猜想的第1部分...也就是弱哥德巴赫猜想,已经在2013年的时候被巴黎高等师范学院研究员哈洛德·贺欧夫各特被彻底解决。
而哥德巴赫猜想的第2部分目前最好的结果,则被称为陈氏定理。
没错。
这部分成果就是陈景润证明出来的——至于它的意义很早以前提及过,此处就