合论的人看到这篇论文都眼前一亮。
他们第一次知道,奇异基数的解法还能这样解。
心中对叶非充满佩服和惊叹。
进而改变一些人在集合论证明的探索道路上的思路。
叶非在将论文改几遍后,还是将论文投给《国际数学分析》期刊。
一周后,叶非发表第二篇奇异基数解法论文——卷积奇异基数解法。
很多人看到第二篇解法论文,心中惊呼。
“还有第二种解法?”
“常人能想出一种解法已经是大幸了,叶非竟然在很短的时间弄出第二种解法。”
“不知道叶非的脑子是怎么长的,能在这么短的时间想出两种解法。”
“精彩,第二种解法和第一种解法同样精彩。”
“这篇论文里面用到卷积核的对偶型、Wiener-Hopf型奇异积分布和Cauchy核,如果说第一篇论文玩的是脑洞,第二篇论文玩的就是知识。”
“厉害,叶非绝对在数学多个领域,都有很深的研究。”
“夏国中湖大学要出了个人才啊,听说叶非今年才22岁,我22岁的时候,本科才刚刚毕业。”
“能在22岁就对数学有这么深的研究,绝对是天才。”
“……”
叶非看着StackExchange上对他的热议,心中有些得意。
“天才倒是不至于,只不过我有个系统而已。”
叶非今年二十二岁,他上学早,二十一岁本科毕业,同年读研。
说完,他继续修改第二篇论文。
一周后,第三篇论文发表——一类具有Hilbert核奇异基数方程的直接解法。
此时全球很多人都目瞪口呆。
他们以为奇异基数解法,叶非只有一种解法。
但之后又出现第二种。
好吧,两种解法他们还能勉强接受,现在又出现第三种。
你以为论文是小说呢,还能在短期内量产。
但接着他们就非常兴奋,奇异基数解法论文当然是越多越好啊!
而且他们发现,叶非的所有解法,都是建立在第一篇论文证明奇异基数基础之上。
每一种解法,都非常精彩,总有常人所不能想之处,让他们对数学多出许多想法。
所以,对于这样的论文,当然是越多越好。
催更,在线催更!